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Outline

* Provide an overview of v5.0 averaging
kernels/smoothing operators
— What are they?
— How do we apply them and what are the caveats?
« Discuss diagnostic capability of averaging
kernels

— Calculation of retrieval resolution
* Averaging kernel resolution
 FWHM error covariance matrices

— Calculation of statistics using averaging kernels
« Summary and Future Directions
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What are averaging kernels?

« Averaging kernels are a linear representation of the
vertical weighting of retrievals.

— Related to the amount of information determined from the
radiances and how much is due to the first guess [Rodgers,
19706].

« To some degree avoids aliasing comparisons of in situ
measurements vs. retrievals due to incorrect first guesses.

« Enables assessment of where vertically we have information.

— Related to the vertical resolution of retrievals [Backus and
Gilbert, 1969; Conrath, 1972; Rodgers, 1976; Purser and Huang,
1993]

— Required by modelers to properly use AIRS trace gas products.
— Enables assessment of retrieval skill on a case by case basis.

* In the IDEAL case (no damping): A =1 : the identity
matrix
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Averaging Kernels Limitations

« Our averaging kernels are a conservative estimate of the vertical
correlation of products because the startup regression solution
(T/H,0/0,) has it's own averaging kernel.

— This becomes important only when our products are overdamped.

— We (NOAA) have the ability to calculate this averaging kernel for case
studies if necessary.

 lteration (esp. background term)/stepwise retrieval complicate
interpretation
— There is a cross-talk between averaging kernels that is not addressed
properly.
« The temperature retrieval believes a fraction of the radiances so that the

averaging kernel for products does not exactly relate to the amount of the
radiances believed.

- Separation of signals using propagated noise covariance terms as well as
intelligent selection of channels minimizes this effect.

— Non-linearity (I won'’t go into this too much here) is not properly handled
by the linear averaging kernel analysis.
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Averaging Kernels Limitations

» Vertical weighting is strictly defined on the
retrieval grid, not the RTA grid.

— Any estimate of resolution based on the internal
averaging kernels is limited by the resolution of our
retrieval functions.

— Transformations between retrieval functions and AIRS
layers exist; however they assume that we can
“‘upsample” derivatives without loss of accuracy.

* Not a big problem if we have sampled the atmosphere
adequately with respect to channel temperature and gaseous
kernel functions.
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A Note on Trapezoidal Functions

» Trapezoidal functions (denoted,F, ;) are used to
interpolate retrieval delta’s onto the RTA grid:

Ax,= Y F, (AA,
J

* These functions serve two purposes:

— Define a reduced measurement space on which finite difference
derivatives are calculated.

— Ensure a smooth product (interpolation).

« Transformation between RTA grid and coarse layers is
provided by a least squares estimate:

AA; = 2 F; Ax, = [Fj]:LFL,j']_lFj',L'(XL'_XO,L')
T

Least squares estimate requires halfbot and halftop
10/6/06 forced to .false.



Linear vs. Log derivatives

[Rodgers and Connor 2003] form of the equation assumes linearity in
changes in state. For temperature this is true and we have:

x =x,+0(x-x, )

For minor constituents (H,0, O,, CO, CH,, etc.) the averaging kernels
act in logarithmic or %changes in state:

log(x") = log(x,) + O -log(x/x,)

For small perturbations/low information content we can write in terms of %
changes relative to the first guess:

1+(")-(X_XO)

Xy

!
X =X,
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Retrieval Functions and Convolution Recipe

The retrieval calculates coarse layer derivatives and assigns retrieved
changes to fine layers using slb2fin (trapezoids denoted FL,J. ).

We can handle the trapezoidal retrieval functions in much the same
way that the retrieval handles them by:

1. Calculating coarse layer delta states. e.g.,

AAj - z F;,L‘AXL' = [FJfLFL,j']_lFJT,L'(XL'_XO,L')
L

2. Apply averaging kernel to coarse layer deltas
and use the functions to interpolate to the RTA grid.

AR, =X, ~Xo, = Y F ;- Y [P, -AA,]
J J
3. "Use convolution equation on interpolated convolved delta state:

X'= X+ AX
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Retrieval Smoothing Terms

* Retrieval smoothing is composed two terms:
— Regularization (e.g. a noise threshold value termed B, ., ).

— Trapezoidal interpolation rule.

A T 1T
AXL= FL,j Ojaj' [Fj',LFL,j] Fj,L'AXL'

* Regression can impart high resolution structure, this
structure is removed from the comparison by the
trapezoidal smoothing terms if it is finer than the

width trapezoids.
* The following slide illustrates each component.
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An example of retrieval smoothing and
convolution (O5 hole S. Pole)

«Smoothed sonde calculated

assuming averaging kernel

= identity matrix

— |deal case -- what we
would do in the absence of

damping.

*Convolved sonde using
case dependent averaging

kernel.

Retrieval and Convolved
Sonde Compare very well.
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Trapezoidal Null Space
* Projecting the truth-fg onto the trapezoids and interpolating onto the
RTA grid.
~ ~ ~ +
AX; =x; - Xy, =F, ;"F, .- Ax},
AX, = FL,].. -FJT.,L, AX
AX, = FL’J.. -F;.,L. 'FL.,J. -AAj
AX, = Ax,

« Standard deviation between smoothed truth and truth (note this is
dependent on the trapezoid spacing, variability in the truth and
variability in the first guess).

F* Slab avg.
T(p) 0.25K-0.5K | 0.5K-1.0K
H,O(p) 5%-10% 10%-20%
10/6/06 O,;(p) 5%-10% 10%-20% 12




Resolution estimates from error covariance
matrices and averaging kernels

« Vertical resolution of any retrieval is related to the width
of the kernel functions and hence averaging kernels.
— Backus-Gilbert, 1969
— Conrath, 1972

« We can also define the vertical resolution in terms of the
error correlation between atmospheric layers.

cov(Axi,ij) A .
= ;. AX, =X, X,

i,j > i i [

0,0;
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Vertical correlation and resolution at ARM-TWP
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Vertical correlation and resolution at ARM-SGP
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Vertical correlation and resolution in NOAA sondes
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Examples of Statistics using Averaging Kernels

« The information content of AIRS spectra is highly scene dependent
(e.qg. clear vs. cloudy, tropical vs. polar, ocean vs. land, efc. ).
Therefore, the vertical resolution and accuracy of any given retrieval
is a function of scene.

* In previous slides we have shown that portions of the retrieval error
(e.g. those due to the first guess/trapezoidal smoothing) are beyond
the physical retrieval capability.

* |t makes sense to_use an estim_ate of the in_formation conter)t on a
case-by-case basis for comparisons of retrievals to correlative
measurements.

— Use the averaging kernel/trapezoids to convolve the correlative
measurement such the this profile is more comparable to what the
retrieval would “see” given that profile.

« WOUDC Ozone/Radiosondes (see M. Divarkarla’s talk 9:10 today)
— Weighted toward polar cases
— Water from matched operational radiosonde

« Comparisons are for temperature and water only.
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WOUDC Sondes Temperature Statistics
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100

WOUDC Sondes Water Statistic
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Summary

 AIRS averaging kernels and smoothing operators enable
“fair’ comparison of the physical retrieval to correlative
measurements
— smoothing due to trapezoids
— smoothing due to damping (averaging kernel)

« Accounting for errors due to trapezoidal smoothing gives
a lower limit to retrieval ability.
— MAX0.5KforT
— MAX 10% for H,O and O,

» Averaging kernel derived resolution is similar in vertical
shape to resolution derived from error covariance
matrices.

— averaging kernels for the physical temperature and moisture
retrievals are good representations of retrieval vertical weighting
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Future Directions

* Publish results (draft in progress).

* Transformation between 100 layer and
trapezoidal functions introduces large
scale vertical correlation in 100 layer
products
— Consider using more or different retrieval

basis functions (e.g. triangles vs. trapezoids).

* Analysis of information content for ozone
in different scenes.
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Questions?
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Error Correlation at TWP

Temperature First Guess Error Correlation

* Physical retrieval error
correlation (bottom panel)
IS more diagonal than the
regression error
correlation (lower panel)

« Smoothing at the
tropopause ~15km is
evident in both physical
and regression solutions.
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Derivation of averaging kernels

2 .0 T T
0,,=U,, -dlag(é—k) U, K, W, K,

k

0,.=U,, -dlag(é—k)-U,f,j. U, diag(é,) U, ,
k

O,,=U,, diag6,) U, ;
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